
J. Fluid Mech. (2008), vol. 597, pp. 145–169. c© 2008 Cambridge University Press

doi:10.1017/S002211200700972X Printed in the United Kingdom

145

On beach cusp formation
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A system of shallow water equations and a bed evolution equation are used to examine
the evolution of perturbations on an erodible, initially plane beach subject to normal
wave incidence. Both a permeable (under Darcy’s law) and an impermeable beach are
considered. It is found that alongshore-periodic morphological features reminiscent
of swash beach cusps form after a number of incident wave periods on both beaches.
On the permeable (impermeable) beach these patterns are accretional (erosional).
In both cases flow is ‘horn divergent’. Spacings of the cusps are consistent with
observations, and are close to those provided by a standing synchronous linear edge
wave. An analysis of the processes leading to bed change is presented. Two physical
mechanisms are identified: concentration gradient and flow divergence, which are
dominant in the lower and upper swash respectively, and their difference over a wave
cycle leads to erosion or deposition on an impermeable beach. Infiltration enters this
balance in the upper swash. A bed wave of elevation is shown to advance up the
beach at the tip of the uprush, with a smaller wave of depression on the backwash. It
is found that cusp horns can grow by a positive feedback mechanism stemming from
decreased (increased) backwash on positive (negative) bed perturbations.

1. Introduction
Beach cusps are regularly spaced crescentic morphological patterns formed in the

swash zone of a beach. They consist of seaward-pointing horns with steep lateral
slopes separated by a gentler sloping embayment (see e.g. Coco, O’Hare & Huntley
1999). Typically, they have spacings λc (i.e. horn-to-horn distances) of between 1 and
50 m (Masselink & Pattiaratchi 1998). Hereafter we refer to them as swash cusps, to
differentiate them from other shoreline periodic features such as giant cusps (Inman &
Guza 1982), which have larger spacings (λc > 75 m) and which are believed to form
as part of larger surf-zone circulation cells (Inman & Guza 1982; Calvete et al.
2005). Swash cusps are thought to shape the beach by either erosion of the existing
beach profile (Sallenger 1979; Guza & Bowen 1981), or deposition at the shoreline
(Masselink & Pattiaratchi 1998).

There is general agreement about the conditions associated with cusp generation.
Although a few field observations cite horn-convergent flows (e.g. Dyer 1986) swash
cusps are now thought to be developed and maintained by a significantly two-
dimensional horn-divergent swash flow circulation pattern (see figure 1 in Masselink &
Pattiaratchi 1998). (Note that ‘horn-divergent’ here means that the flow splits to either
side of the horn in the uprush and not that the flow is divergent on the uprush.) Swash
cusps are usually associated with reflective wave conditions, relatively steep beach
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gradients, and normally incident waves, which can either be plunging or surging. It
has also been noted that they occur on coarser grained beaches (see Coco et al. 1999,
for a comprehensive overview).

Historically, there have been differing views on the mechanisms leading to the
development of swash cusps (see Coco et al. 1999). Two theories have achieved some
success in describing the formation and behaviour of beach cusps: the standing edge
wave model (see Guza & Inman 1975); and the self-organization model (see Werner &
Fink 1993; Coco, Huntley & O’Hare 2000).

In the first, an alongshore standing subharmonic edge wave superimposed on a
normally incident reflected wave produces a systematic alongshore variation in swash
height, which results in a regular erosional perturbation, leading to the cuspate pattern
(Guza & Inman 1975) of spacing λc = λsub/2, where λsub is the edge wavelength. The
formation of the cusps, however, reduces the standing wave amplitude (Guza & Inman
1975; Guza & Bowen 1981), so the process is self-limiting. Further, fully reflective
wave conditions are required, which limits the applicability of this mechanism. It is
now thought that such a model may explain the initiation of cusp formation, but
that a different, positive feedback is needed to maintain the cuspate pattern. This is
supported by the fact that subharmonic edge waves with their characteristic runup at
alternate cusps are not often seen on real beaches (Inman & Guza 1982).

Self-organizational modelling is based on a set of abstracted rules for sediment
movement. It has proven successful in reproducing cusp-like features and their
evolution. In the approach (see Werner & Fink 1993; Coco et al. 2000, 2003) flow is
represented as discrete volumes (particles) with an associated velocity and sediment
carrying capacity (related to the velocity). Water particle motion is described using
ballistic theory on a slope, and the sediment transport flux is a cubic relationship with
local particle velocity. Particles of water deposit (erode) sediment as they decelerate
(accelerate). Individual changes in local cellular beach level are then smoothed so as
to distribute them to cells without water, the smoothing principle being to minimize
the local variation to a plane (see Coco et al. 2000). These models predict that

λc = f Se (1.1)

where Se is the horizontal swash excursion (the horizontal distance between the limits
of runup and rundown; see Komar & Holman 1986) and f is a constant in the range
1–3 (Werner & Fink 1993); Coco et al. (1999) found the average value of f to be
1.63.

The field evidence is mixed: Masselink et al. (2004) found no evidence for the
existence of edge waves in a cusp field; on the other hand Ciriano et al. (2005) do
record edge wave activity. Neither approach has therefore proved satisfactory, either
because of purely linear dynamics and limited success, or because of a somewhat
ad hoc approach based on limited physics.

Here we investigate a fully coupled morpho-hydrodynamical system based on flow
equations (nonlinear shallow water equations) and a sediment conservation equation.
We also include the effects of beach permeability through Darcy’s law. This achieves
two ends, namely, the inclusion of physics that is important on coarser grained beaches
on which cusps predominantly occur, and a mechanism for phase-averaged onshore
sediment transport, which is necessary if purely offshore movement that accompanies
power-law-based sediment transport laws is to be avoided (see Pritchard & Hogg
2005).

In contrast to previous approaches, therefore, we consider a consistent set of
nonlinear equations in which bed and flow interact without constraint, other than
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Figure 1. The coordinate system and physical situation.

that implied by shallow water dynamics and the sediment transport relation. The aim
is to investigate if cusps can indeed form and to understand the process by which
they do so.

In the next section we present the equations and parameterizations, followed by
the numerical model and the numerical experiments.

2. Formulation
We consider an initially rectilinear coast, with y (x) the alongshore (cross-shore)

coordinate, and z the vertical coordinate (z = B0 is the still water level). The beach
surface (dry or submerged) is given by z = B(x, y, t): see figure 1. Morphological
evolution is described by a sediment continuity equation

B,t + ξq1,x + ξq2,y = 0 (2.1)

where q is the volumetric horizontal sediment flux vector, x = (x1, x2) ≡ (x, y), t is
time and ξ = 1/(1 − n) where n is porosity of the sand. We thus neglect effects due to
rapid changes in suspended sediment concentration. Water motions are described by
shallow water equations, including the effects of infiltration into the beach:

d,t + (du),x + (dv),y = −w, (2.2)

(du),t +

(
du2 +

gd2

2

)
,x

+ (duv),y = −gdB,x − fw

2
|u|u − uw, (2.3)

(dv),t + (duv),x +

(
dv2 +

gd2

2

)
,y

= −gdB,y − fw

2
|u|v − vw, (2.4)

where d is the total water depth, u = (u, v) is the depth-averaged velocity (from B to
free-surface elevation η), and fw is a dimensionless bed friction factor. The term w

is the infiltration velocity of water percolating into the beach under a head of water.
The free-slip bed boundary conditions applied are

B,t + ujB,xj
− W = w (2.5)
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where W is the vertical velocity in the free region at the bed, and these state that the
only normal component to the bed is the infiltration velocity and that this is vertical.
The approach taken here is based on that of Packwood (1983), apart from (2.5) and
terms involving w in (2.3) and (2..4), and is consistent with the assumption of Darcy
flow within the beach. Note that the form of the equations is such that infiltration
has no effect on the momentum budget other than through the loss of water.

Following Packwood (1983) w is determined from the equation

w = nζ,t = K

(
1 +

d

ζ

)
(2.6)

based on Darcy’s law (see Dicker 1969; Chow, Maidment & Mays 1988), where K

is the hydraulic conductivity of the sediment (taken here to be 0.01 m s−1, consistent
with coarse sand; see Packwood & Peregrine 1980), and ζ the depth of infiltration in
a single swash event (see figure 1). Thus, the infiltration front is initially driven by a
hydrostatic pressure head d , and descends also under its own weight. Here we only
calculate the infiltration front under each swash event. After the wave has retreated we
discard the infiltration ‘wedge’ or ‘lens’. There is therefore no groundwater modelling,
no exfiltration, and no suction head; water is therefore not conserved: see Appendix A
for details of this approach.

The sediment flux q is specified as

q = A(u|u|2, v|u|2) (2.7)

where A is a dimensional constant [T 2/L] related to the beach material and flow
regime. The choice of (2.7) is motivated by numerical considerations (see Hudson &
Sweby 2003); to retain consistency with Coco et al. (2000), who used the same relation;
and because the relation is a reasonable empirical swash sediment transport relation
(see e.g. Masselink & Li 2001; Butt et al. 2004; Hsu & Raubenheimer 2006). Here
we treat the formula as a total-load formula. The constant A can be approximated
using the sediment transport equation of Van Rijn to yield an expression giving A as
a function of median grain diameter (d50) or it can be calibrated using experimental
data (see Hudson & Sweby 2003). Here we do the latter and take A= 0.004 s2 m−1.

The relation (2.7) is modified by the inclusion of a downslope term:

q∗ = q − 1

tan φ
|q|∇b . (2.8)

This allows sediment to move downslope under gravity as long as it is already in
motion; b is a bed perturbation from the initial bathymetry (B(x, y, t = 0)); φ is the
angle of repose of the sediment, here 32◦.

2.1. Numerical method

The numerical scheme is effected on a Cartesian grid with the x-coordinate running
onshore and y alongshore. Solution variables are stored at cell centres (x ij = ((i −
1/2)�x, (j − 1/2)�y) = (xi, yj ) for i = 1, . . . , Nx , j = 1, . . . , Ny , where Nx�x = Lx and
Ny�y = Ly) in a finite volume approach, and a wet–dry boundary is defined based on
a minimum wet cell depth: dmin (here 2 mm) and a secondary threshold below which
the water is no longer dynamically active in the model (here 2 cm). See Hubbard &
Dodd (2002) for more details of the layout and wetting and drying approach, which
is used for the bed level B as well. Numerical solution is effected by means of the
Roe-type scheme of Hudson & Sweby (2003), and a Minmod flux limiter is used.
Solution of the four-equation system is simultaneous, so no iteration to a steady state
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or morphodynamical time-stepping is necessary (or desirable). Other derivatives in
(2.1)–(2.4) are treated in a pointwise fashion (i.e. by central differencing).

Offshore boundary conditions for the flow are characteristics based, thus allowing
reflected waves to exit the domain. This is achieved by priming the two layers of
dummy cells that surround the domain with the incoming signal (dinc, uinc), and then
allowing the approximate Riemann solver to achieve the characteristic decomposition.
The bed levels in the dummy cells at the offshore boundary are copied from those
in B1,j , so that the bed level is not forced there. Three types of lateral boundary
condition were tested: reflective

(d, u, B)i,0/−1/Ny+1/Ny+2 = (d, u, B)i,1/2/Ny/Ny−1; vi,0/−1/Ny+1/Ny+2 = −vi,1/2/Ny/Ny−1;

extrapolative

(d, u, v, B)i,0/−1/Ny+1/Ny+2 = (d, u, v, B)i,1/Ny
;

and periodic

(d, u, v, B)i,0/−1/Ny+1/Ny+2 = (d, u, v, B)i,Ny/Ny−1/1/2.

In all numerial simulations no difference in λc was observed between the approaches.
Adjacent to the lateral boundaries, the first two approaches sometimes resulted in
an eventual local breakdown in the numerical solution. We therefore use periodic
boundary conditions throughout, with Ly � 6λc (4λc was found to be large enough to
ensure no suppression of naturally occurring wavelengths for which Ly �= nλc for n a
natural number).

2.1.1. Infiltration

After both bed and flow have been updated at each time level, (2.6) is solved
to determine the infiltration velocity w. This is done, following Packwood (1983),
by calculating the infiltration depth ζ of the water due to a pressure head d . This
equation is only solved at any cell location x ij when B >B0 (i.e. the beach is above
the still water level), and the calculation begins when the free flow region above cell
x ij is wetted. Then we follow Packwood (1983) (see also Karambas 2003) and assume
a linear variation between d(x ij , tn) and d(x ij , tn + �t) during the initial integration
from zero to finite ζ . In subsequent time-steps we use a fourth-order Runge–Kutta
scheme. Note that in theory d(x ij , tn) decreases as ζ , measured from the beach face at
x ij , increases. We do not correct d to compensate for the change in head during this
integration; rather we calculate w at the new time via (2.6) and then extract water
(2.2) and momentum (2.3)–(2.4) based on the calculated w and the new time level
prior to the next solution step using the Roe-type scheme.

3. Numerical simulations
Simulations are performed on an initially plane, alongshore-uniform sloping beach

with a slope tan β = 0.14, which is the same as that used by Coco et al. (2000), and
still water depth of 1 m at the offshore boundary (x = x0). The chosen beach slope is
representative of steep slopes in the swash region of permeable beaches. The incoming
signal is a sine wave (height H0, period T ) to which a random perturbation ε is added
at each alongshore cell so that η(yj , t) = η0(t) + ε(yj , t); ε is randomly chosen from
a uniform normal distribution on interval [−ηε, ηε]. Here we use ηε = 2 cm. These
values are subsequently smoothed in space and time in order to remove high-frequency
variation before being applied. This is done with a 5-point weighted average in space
and a simple average in time between the new perturbation and the previously
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T Permeable Impermeable

Linear growth rate λc f Linear growth rate λc f

[s] [s−1] [m] [s−1] [m]

3 0.057 4.2 3.1 0.041 2.9 2.0
4 0.064 5.3 2.7 0.027 4.4 2.0
5 0.048 8.3 3.4 0.021 6.3 2.2
6 0.025 10.0 3.4 (0.010) (8.9) (2.9)
7 0.017 12.5 3.7
8 (0.0064) (13.8) (3.6)

Table 1. Summary of the results of the morphodynamical simulations. Note that the linear
growth rates were calculated by Fourier analysis of alongshore sections at both cusp (horn and
embayment) and trough (anti-phase pool and shelf) locations. Estimates were in agreement at
both locations except for T = 3 s (permeable), where there was a 20 % variation. The figure
shown is the average. NB. Figures in parentheses denote only weak evidence for cusps.

applied perturbation. The sensitivity of the simulations to both ηε and smoothing was
examined; larger (smaller) values of ηε lead to faster (smaller) growth of beach forms
but no qualitative change. Variation in smoothing has no significant effect. Cell sizes
are �x =�y = 0.1 m, for which convergence is achieved.

In the simulations we use a (default) period T = 5 s and height H0 = 0.25 m. These
are representative of those observed in the field when beach cusps have formed (see
Coco et al. 1999, table 1), and correspond to tan β/

√
H0/L∞ ≈ 1.75, implying that

the waves are marginally within the plunging breaker regime (see Mei 1990). These
conditions are also similar to those of Coco et al. (2000), who also observed cusp
formation in their model. A constant bed friction coefficient fw = 0.05 is used.

3.1. Beach cusps on permeable and non-permeable beaches

Figure 2 shows the change in the bed level relative to the plane beach over 500 s
(100 periods). After 20 periods a rhythmic morphological pattern and flow field has
emerged. This pattern continues to develop into that of beach cusps, with horns
(here at 15, 23.5 and 32 m) and embayments (11, 19.5 and 28), giving λc ≈ 8.3 m,
⇒ f ≈ 3.4, Note the clear horn-divergent phase-averaged flow. The cusp pattern is
primarily depositional in the upper swash, but erosional further offshore. After 500 s
a series of shoals and pools opposite (respectively) the embayments and the horns
are developing. These are also observed in the field.

Figure 3 shows the equivalent bed changes over 500 s on a non-permeable beach.
The phase-averaged flow is initially offshore directed, but, after 80 periods, we find the
horn-divergent flow associated with cusps (f ≈ 2.2). These cusps are erosive, however,
and their upper limit recesses. The cusps also develop more slowly.

Further simulations were run for both permeable and impermeable beaches. The
results are summarized in table 1.

4. Physical mechanisms
To understand the mechanisms for changes in the bed it is instructive to combine

(2.2) and (2.1):

B,t

(
1 + ξ

α

d

)
= −ξdu · ∇α

d
+ ξ

α

d
(η,t + w) + ξ∇ ·

(
α

tanφ
|u|∇b

)
(4.1)
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Figure 2. Change in bed level (m) relative to a plane beach (colours) after 20, 40, 60, 80 and
100 periods, on permeable beach, and velocity vectors averaged over preceeding period. Only
the central 25m of the domain are shown.
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Figure 3. Change in bed level (m) on impermeable beach. For other details see figure 2.
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where α =A|u|2. Thus, α/d represents a depth-averaged concentration, which
we denote C(� 0). The left of (4.1) is (essentially) the rate of bed change. The first
two terms on the right result from the assumption q = αu, namely, that the sediment
(α is interpreted as the total volume of sediment in motion per unit area) is advected
by the flow. This concentration may be supposed to be located mostly near the bed.
The term −ξdu · ∇(α/d) is best understood by considering a steady flow with spatially
varying concentration; in a swash context this could be a steady hydraulic jump in the
backwash. Thus high concentrations in the supercritical flow moving into the jump and
lower concentrations behind the jump provide an implied positive gradient in C with
a negative u (x positive onshore). Thus deposition will occur as the flow decelerates
through the jump. (NB Turbulence within the jump, which can lead to local scour,
is not included in this term, or in the shallow water equations.) This term is analogous
to that of Falqués, Coco & Huntley (2000), who examined phase-averaged equations
and bed growth in the surf zone. In their analysis high concentrations are caused by
wave-induced stirring, whereas here the flow and depth-averaged concentration are
more intimately linked.

The other part of the sediment flux divergence, (α/d)η,t , results from the flow
divergence, and, similarly, is most easily understood by neglecting the concentration
gradient. Thus, for a locally spatially uniform C flow convergence (divergence) leads
to deposition (erosion). In the swash region we expect flow convergence in the uprush
and divergence in the backwash. In Appendix C we illustrate these two effects, which
are usually in opposition to each other, using the analytical solution of Shen & Meyer
(1963).

It can be seen that ξ (α/d)w � 0, so infiltration is purely depositional. Note also
that for periodic flow on an immobile bed with infiltration, ∇du = −w, which implies
convergent flow, where an overbar denotes a period (phase) average. For an erodible
bed subject to periodic forcing we may therefore expect ∇du ≈ −w. The final term
represents bed diffusion.

4.1. Cross-shore dynamics

It is useful to examine pure cross-shore dynamics under equivalent conditions.
Accordingly, we ran a series of one-dimensional experiments on an otherwise identical
initial beach. The results for the permeable beach are shown in figure 4. The growth
of the swash bar and the breaker bar are consistent with the behaviour shown in
figure 2. A cross-shore equilibrium profile develops after about 7000 s.

A similar experiment on the impermeable beach was performed: see figure 5. The
profile is clearly erosive, consistent with figure 3. In figure 4 Se reduces from 2.8 m, its
value after 5 periods (when initial transients have left the domain), to 2.7 m after 80
periods. The reflection coefficient for the equilibrium profile is |R| =0.75 (Se = 2.2m).

To look at the role of the terms in (4.1) we focus on cross-shore profiles in figure 4
and figure 5 after 250 s. Over one cycle the divergence term is directly opposed to
the concentration gradient term in the swash region (figure 6) (see also Appendix C),
with the permeability making the difference between an erosive and a depositional
beach. This effect also goes beyond just the region where the permeability operates,
because less water is available to erode in the backwash.

In figure 7 we can see C, and the flow and sediment flux divergence (excluding
diffusion), over a wave cycle. It can be seen that during the uprush a bed wave of
elevation (deposition) is driven up the beach (B,t = − ξ∇q neglecting diffusion), at the
speed of the incoming wave, caused by the flow convergence. In its lee the positive
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Figure 4. Permeable beach. Cross-shore experiment. (a) Change in bed level (m) relative to
a plane beach over 5000 s (1000 periods). Solid line: 1000 s; dotted line: 2000 s; Dashed line:
3000 s; dot-dashed line: 4000 s; ×: 5000 s. (b) Final beach profile after 5000 s.
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Figure 5. Impermeable beach. Cross-shore experiment. (a) Change in bed level (m) relative
to a plane beach over 20000 s (4000 periods). Solid line: 1000 s; dotted line: 3000 s; dashed
line: 5000 s; ×: 7000 s; dot-dashed line: 10000 s; �: 15000 s; +: 20000 s. (b) Final beach profile
after 20000 s.

concentration gradient then causes erosion. Note that this is analagous to the erodible-
bed dambreak case shown in Appendix B, figure 17. As the water recedes a similar
wave follows the backwash. This highly dynamic sediment behaviour occurs because
of the high Froude numbers in this region, and is also the reason why decoupling
morphodynamic and hydrodynamic time scales in the swash is not appropriate (see
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Figure 6. Phase-averaged terms in (4.1) for (a) permeable beach and (b) impermeable beach,
cross-shore experiment from 276–281 s. Solid line: b,t ; dashed line: ξ (α/d)η,t ; dotted line:

−ξ du · ∇(α/d); dot-dash line: ξ∇ · ((α/tanφ)|u|∇b); thick solid line: ξ (α/d)w.

Hudson et al. 2005). By rewriting (4.1) in the absence of bed diffusion as

B,t +
ξC

1 + ξC
u · ∇b =

Cξ

1 + ξC
(η,t + u · ∇η − u · ∇α) (4.2)

it can be seen that the bed wave is forced by the flow (as is expected; bed diffusion
through the angle of repose is the only restoring mechanism of the sediment), and
that as C → ∞ (as d → 0 or u → ∞) this forcing happens on the time scale of the
hydrodynamics, as seen in figure 7.

The rate of bed growth of the other morphodynamic feature, the offshore bar,
is significantly smaller: ∇du ≈ 0 everywhere except over the offshore-travelling bar,
where phase-averaged flow is slightly divergent, and in the region of infiltration for
the permeable beach, where the flow is strongly convergent (see above).

In terms of duration the backwash is dominant in the lower swash (figure 8), with
uprush and backwash becoming equal on approaching the limit of uprush, consistent
with the Shen & Meyer (1963) solution. Infiltration alters the balances in the upper
swash in favour of uprush (figure 8). If we now examine the bed growth/decay terms
in (4.1) (excluding diffusion and infiltration) we can see their effect on both phases
of the swash (figure 9). On the uprush the concentration gradient is dominant in the
lower swash, but flow convergence dominant in the upper swash. Thus if backwash
were removed, there would be strong erosion in the lower swash and deposition in
the upper swash.

4.2. Two-dimensional hydrodynamics

Turning now to the formation of the cusps themselves we first consider a non-erodible,
impermeable bed, for fw = 0. In figure 10 we can see the resulting phase-averaged
and alongshore-filtered flow

1

T

∫ T

0

(
u − 1

Ly

∫ Ly

0

u dy, v

)
dt.

This flow exhibits alongshore spatial periodicity of about 5 m, which increases to
∼7.5 m, and finally breaks down into a disorganized flow. The addition of friction
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Figure 7. Cross-shore velocity, depth-averaged concentration, flow and sediment divergence
for (a) permeable beach and (b) impermeable beach, cross-shore experiment from 276–281 s.

(fw = 0.005) reduces the energy of the flow, stabilizes it, and preserves the shorter
wavelength. Larger values of fw ( > 0.01) suppress the periodicity completely.

Other periods also exhibit alongshore-periodic averaged flows: these are shown in
table 2. The observed λflow up to T = 6 s is, at least initially, close to that of linear,
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synchronous (shallow water) edge waves on the same constant slope. For higher
periods this correspondence disappears; at these periods there is significant reflection.
The growth and equilibration of these flows is shown in figure 11, where the kinetic
energies have been normalized by Se.

The physical mechanism by which this hydrodynamic instability develops is related
to the bore collapse event. For T � 6 s, the bore collapse itself drives the swash flow.
So, if one region of an incoming wave front is of higher amplitude locally it will
reach the shoreline (say at a point yA) and run up the beach face slightly ahead of
adjacent sections of the front. The resulting lateral pressure gradient then drives a
flow to either side, which will both reduce subsequent backwash at yA, and enhance
that at either side (yA ± λflow/2). As long as the next wave encounters that enhanced
backwash this will, in turn, further retard the subsequent uprush at these locations. A
positive feedback mechanism is thus established, as long as the natural swash period
(Tswash) for that bore collapse event (see Baldock & Holmes 1999) is close enough to
the wave period (T ), i.e. if there is resonance between T and Tswash: see figure 11.
For a frictionless periodic shallow-water equation system where the swash is bore
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λsyn λsub

T dB uB Se Tswash λflow

[s] [m] [m s−1] [m] |R| [s] [m] (n = 0)[m] (n = 1)[m] (n = 0)[m]

3 0.12 0.63 1.55 0.08 3.48 2.6 1.97 5.90 7.87
4 0.20 0.70 2.75 0.17 4.50 3.5 → ? 3.50 10.5 14.0
5 0.28 0.72 4.05 0.01 5.28 5.1 → 8.5(∼ 7.5) → ? 5.46 16.4 21.9
6 0.38 0.52 5.45 0.39 5.79 4.3 & 8.5 → 8.5(∼ 10) 7.87 23.6 31.5
7 0.45 0.35 6.45 0.64 6.04 6.4 10.71 32.1 42.8
8 0.49 0.1 7.25 0.76 5.94 8.5 13.99 42.0 56.0

Table 2. Spacings of observed circulation patterns in hydrodynamic numerical experiments.
One-dimensional: dB , uB (depth and velocity at bore collapse), Se , |R| (reflection coefficent,
calculated from linear theory), and Tswash (swash period, calculated according to ballistic theory
using R+ = uB + 2

√
gdB ). Two-dimensional: λflow is the spatial period of phase-averaged flow

field (if extant). If a pattern was visible a Fourier analysis was performed (at several points
in the cross-shore variable (x)), and the position of the peak of the power density spectrum
in wavenumber space used to define λflow . NB Because of limited alongshore domain length
the spectral resolution at large wavelengths is limited. This only significantly affects the 5
and 6 s experiments, where the spectral estimate is different from the observed spacing (given
in parentheses). Note also that for 6 s a smaller wavelength flow pattern was initially visible
very close to the shore, and a larger one elsewhere. A subsequent breakdown in alongshore
periodicity is indicated by a question mark. λsyn,sub are wavelengths of linear (shallow water,
synchronous or subharmonic) edge waves. Simulations were run for 20–30 periods.

driven, a resonance (equlibrium) will always be established. The apparent detuning
for small periods is possibly due to the increasing innacuracy of the correction
based on the Shen & Meyer solution and difficulties in obtaining precise velocities
at collapse. For larger values of |R| the bore collapse occurs with small uB , as in the
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Figure 11. (a) Normalized kinetic energy of phase- and alongshore-averaged flow as a function
of time for the cases shown in table 2. (b) Swash period (normalized by wave period) calculated
from ballistic theory both with (∗) and without (◦) correction for velocity at bore collapse
(uB ) and finite model minimum depth (dmin = 2 mm). The ‘corrected’ swash period using the
Shen & Meyer (1963) solution is Tswash = (4/sin β)

√
(db/g) − 6

√
dmin/(g tanβ sin β).

classical dambreak problem (see Shen & Meyer 1963; Peregrine & Williams 2001), but
thereafter R+ = u + 2

√
gd increases, making the subsequent swash event significantly

different (i.e. non-bore-driven), because the wave is substantially reflected. Further,
the feedback mechanism will be weaker for waves that propagate at the linear phase
speed.

4.3. Alongshore spacings

This feedback mechanism feeds energy (initially at least) into synchronous edge-
wave-like modes. In figure 12 the instantaneous alongshore-filtered flow is shown
through the wave cycle for T = 5 s (fw = 0.005); see also figure 10 for the phase-
averaged flow. Flow at adjacent nodes is very different, as might be expected if they
are ‘horn’ and ‘embayment’ respectively. At 95.8 s a near maximum (if filtered flow
velocities are used as an indicator of maximum standing wave amplitude) is achieved
at alternate anti-nodes, approximately at maximum runup. Thereafter, flow reverses
on the backwash (97.4 s) until the incoming wave front, being retarded by the excess
backwash (98.6 s) at alternate anti-nodes (‘embayments’), is channelled initially into
every other anti-node (‘horns’). Thereafter (100 s) flow reverses and the process begins
again. The circulation cells behind the shoreline retain the same sense of rotation
through the cycle. They are similar to those observed when a non-breaking standing
wave is imposed on a synchronous edge wave (see Kaneko 1983). These features give
a strong indication that a synchronous edge wave is excited by the swash resonance.
Why the circulation associated with the 7 and 8 s waves (see figure 10) develops and
has the observed wavelengths is not clear.

4.4. Physical explanation for cusp formation

These hydrodynamics raise questions regarding the swash morphodynamics, to which
we now turn. The observed λc for T = 5 s (8.3 m) is larger than the equivalent
initial λflow , although closer to λflow for the circulation that subsequently develops: see
figure 10. Figure 13 shows that cusp development happens after the cross-shore profile
has already been progressing. Accordingly, figure 14 shows the calculated edge wave
for the (non-erodible) bed profile illustrated, which is based on an alongshore-averaged
profile of that shown in figure 2 after 40 periods with offshore portion following an
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exponential decay to a constant offshore value. The slope at the shoreline is about
0.2. The resulting dispersion diagram reveals a (mode 0) edge wave with λsyn = 8.9 m,
which is limited primarily to the region shoreward of the bar.
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We can now understand this cusp formation mechanism. In figure 15 we see the
cusp formation mechanism for an embayment and horn over one cycle. At 245 s we
see the beginning of rundown and flow divergence at a horn. By 246.2 s the backwash
has eroded some of the horn. Note the shoreward movement in bed contours as
the wave front passes, particularly those below the zero level. As the front passes
the divergence effect removes sediment as a bed wave propagates offshore. The
concentration gradient mostly acts now to accrete (−ξ du · ∇C > 0): see the bottom
right of the figure, where the front has yet to pass. Note how far behind the horn
backwash is that in the embayment. At 248 s the uprush is strong and clearly occurs
first at the horn centre, and thereafter (248.6 s) splits to each side of the horn. There is
a very high concentration at the wave front, and a clear depositional effect associated
with its passage. The wave front is retarded on the horn, leading to dvC,y < 0 each
side of the horn, thus diminishing the erosional effect of this term. Again, note that
on the uprush the embayment flow initially lags behind that at the horns. At 249.6 s
the flow has begun to recede in the lower swash, and in the upper swash it splits to
each side of the horn; much of this flow returns via the embayment and not down the
horn. The horn (positive perturbation) therefore reduces backwash (and also through
infiltration). At the end of the cycle there is deposition (erosion) at the horn location
everywhere above (below) the zero contour.

The erodible bed enhances the swash resonance effect, because a larger wave (at
yA recall) will not only produce the hydrodynamic effects (lateral pressure gradients
inducing a splitting of the uprush and thereafter interaction with the backwash)
but also enhanced deposition at yA and erosion at yA ± λc/2 in the upper swash,
consistent with cusp horns and embayments. This explains why cusps develop for
T =7 s for λc > λflow of table 2, and why fw = 0.05 does not damp out circulation (as
it does for the hydrodynamic experiments). Infiltration also enhances cusp formation
by reducing further backwash at incipient cusp locations. Two processes limit the size
of cusps: bed downslope sediment transport, and the gradually increasing value of
|R|, which counteracts the swash resonance. A morphodynamical simulation run with
the equilibrium profile of figure 4 extended alongshore (for which |R| = 0.31 after 5
periods, 0.53 after 80 periods, and 0.75 at equilibrium), shows no cusp development
after 100 periods.

5. Concluding remarks
The morphodynamical simulations indicate increasing (linear) cusp growth rates

for decreasing periods (impermeable), and a growth rate peak at about a 4 s period
(permeable). For smaller periods (i.e. smaller Irribarren number) the waves in reality
become spilling, so the dynamics of the swash will change from those illustrated, to
those for real random seas, in which the low-frequency signal (even for a narrow-
banded sea) will swamp individual shoreline wave motions. Therefore this trend
should be viewed as applying only until the nature of the breaking changes.

The result is that there is likely to be a most favourable wave period at which a
beach will exhibit cusp development, at least by bore-driven mechanisms.

The (hydrodynamical) result that a fully reflective wave does not generate ‘cusp-like’
circulation (borne out also by the decreasing growth rate for the morphodynamical
simulations) is at first surprising, because cusps are generally associated with reflective
beaches. However, the increased instability of the morphodynamical system (compared
to the hydrodynamical one) should be noted, i.e. highly reflective beaches, e.g. for
T = 7 s, produce cusp spacings that have no hydrodynamical equivalent. Further,
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Figure 15. Bed perturbations (black labelled contours), concentration (grey contours) and
velocity vectors over a wave cycle at a cusp horn (a) and an embayment (b) in a permeable
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fully reflective waves are known to excite subharmonic standing edge waves (Guza &
Inman 1975). The alongshore domain length here precluded this process (because
nλsub �=Ly for small n). Note also that the swash beach profile is reworked by the
waves so as to become more reflective (both in one and two dimensions). Thus,
beaches that are initially only mildly reflective may become highly reflective during
the process of cusp development, which may obscure the ‘initial’ beach conditions
and result in field observations that incorrectly assess the beach reflectivity associated
with cusp development.

Observed cusp spacings (λc) are from the middle to the upper end of the range
found by Coco et al. (2000) in their modelling. The growth rates calculated here
are very high, but it should be noted that this is the linear growth rate (from very
early in their development, where the evolution of the spectral peak is approximately
exponential). Further, a smaller A is likely to lead to smaller growth rates.

Beach permeability clearly favours cusp development, by enhancing the feedback
mechanism (e.g. less backwash and therefore offshore sediment transport at horns).
Other onshore swash sediment transport processes are also likely to be more
auspicious for cusp development, due to the horns being built quicker (and therefore
their initial feedback in diverting the flow into the embayments increased, thereby
transporting more sediment offshore in increased backwash). Note, however, that this
may also result in a gradual filling in of the embayments.

The notable phase lag between horn/embayment/uprush/backwash results in a
strong jet-like flow from the embayment as the next wave approaches. This is
frequently observed in the field.
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Appendix A. Infiltration
Equation (2.6) is more usually referred to as the Green–Ampt approximation (see

Chow et al. 1988). We ignore the suction head in (2.6), and (implicitly) in our internal
water table estimates. For a ‘sand’ beach Chow et al. (1988) give 5 cm for the suction
head, and for a coarse sand beach (K ≈ 1 cm s−1) we may expect it to be less than
this. This effect will reduce the distance between the descending front and the water
table, and therefore infiltration too. We also ignore lateral diffusion, which will reduce
ζ,t as water penetrates further shoreward. These terms are thus opposing.

In § 2.1.1 we note that over the first time-step in the infiltration calculation we
follow Packwood (1983) (and Karambas 2003) in assuming a linear variation in depth
of water (d), from 0 to H0, as a cell initially wets. This is done primarily to avoid the
initial singularity in (2.6) when ζ = 0. Thus

d(x ij , t) =
H0

δt
(t − tn) for tn � t � tn + δt,
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Figure 16. Non-dimensional ζ (a) and w (b) calculated from inertialess equations (A 1)
and (2.6) (for δt = 2

√
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acceleration. (A 1) and (2.6): H0 = 0.1 m (�); H0 = 0.01 m (�); H0 = 0.001 m (�). (A 2):
H0 = 0.1 m (×); H0 = 0.01 m (�); H0 = 0.001m (+).

where δt is the first time-step of the infiltration calculation. This is done using a
particular solution of (2.6) for such a linear variation (Packwood 1983):†

ζ =
K

2n

[
1 +

{
1 +

4nH0

Kδt

}]
(t − tn). (A 1)

This approach has physical appeal because in reality any location will not wet
discontinuously. However, the time scale of initial wetting is likely to be very small
compared with that of infiltration, and, in the initial time step, inertial effects may
be important. To examine the feasibility of using (A 1) we show in figure 16 w and
ζ as calculated from (A 1) and (2.6), and for (2.6) with an additional inertial head
included:

H0 + ζ =
w

K
ζ +

H0

g

dw

dt
(A 2)

where H0 is a constant head. It can be seen that the approach, with δt of the order
of the inertial time scale (

√
H0/g), works reasonably well in reproducing the peak

w. Because the inertial behaviour is restricted to a small time at the beginning of
infiltration the infiltrating volume in the two different approaches is not significantly
different even at the first time-step.

† There appears to be a misprint in Packwood (1983) and Karambas (2003). Equation (6)
of Packwood (1983) ((21) of Karambas (2003)) requires an extra factor of 1/2 multiplying the
right-hand side.
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Figure 17. Water depth, velocity and bed level for a dambreak problem on a mobile,
impermeable bed using the nonlinear shallow water equations, and (2.1) with (2.7). Initial
conditions (d(x < 0, 0) = 1 m, still water). Also shown (solid lines) is the analytical solution for
the classical equivalent dambreak problem on an immobile bed.

Appendix B. Dambreak problem
In figure 17 we present the numerical solution for the dambreak problem defined

by our equation system.

Appendix C. Shen & Meyer solution
The solution of Shen & Meyer (1963) (see also Peregrine & Williams 2001) can

be used to illustrate the different physical effects embodied in (4.1). Using the non-
dimensionalization of Peregrine & Williams (2001) the Shen & Meyer solution can
be written

d(x, t) =
1

36t2
(4t − t2 − 2x)2, (C 1)

u(x, t) =
2

3t
(t − t2 + x), (C 2)

xs(x, t) = 2t − 1
2
t2, (C 3)

where xs is the shoreline. If we ignore infiltration and bed diffusion, we can recover
(4.1) assuming we replace the dimensional sediment transport constant A by non-
dimensional Â= Ag cos β . We find

η,t =
1

36

(
2t − 8 + 16

x

t2
− 8

x2

t3

)
, (C 4)

C,x = 96
t(t − t2 + x)(2 − t)

(4t − t2 − 2x)3
. (C 5)
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Figure 18. Illustration of regions in which flow divergence and concentration gradient terms
change sign in the Shen & Meyer solution.
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Figure 19. Non-dimensional concentration gradient and flow divergence terms for the Shen
and Meyer solution at various times. Solid line: Cη,t ; dashed line: −duC,x . Note that the
different plots are not directly comparable because the factor d1/2 has been factored out of
both expressions to avoid the singularity at the shoreline.

In figure 18 the regions in which the main terms leading to erosion and accretion
change sign are shown. In figure 19 we see the effect of the flow divergence and
concentration gradient terms for the same solution. Note that because the bed is
non-erodible for this solution d,t = η,t , so there is no factor 1+ ξC on the left of (4.1),
which leads to singularities in both flow divergence and concentration gradient terms
as x → xs , which vanishes upon addition of the two terms.
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